AD=-A036 106

POLYTECHNIC INST OF NEW YORK BROOKLYN DEPT OF ELECTR==ETC F/G 9/2

| EFFECT OF MANPOWER DEPLOYMENT AND BUG GENERATION ON SOFTWARE ER=-=FTC(U)
JAN 77 M L SHOOMAN: S NATARAJAN F30602-74~C=0294
UNCLASSIFIED POLY-EE/EP=-76=007 RADC=TR=76=400

END

LMEL

i
2.3

o |




EE
HEEE 4_____

m&m—ﬂm_ummu._.m =

Is
IWIS ’

125

I
I
I










UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE .l T
s 2. GOVT ACCESSION NO,| 3 IENT'S CATALOG NUMBER
g /

e R REPORT & P ERED
| _EFFECT OF MANPOWER_DEPLOYMENT AND BUG Qwsmnou\ Interim Kep@rte -
“ON SOFTWARE ERROR MODELS o onil 1 Jul 75 —3# Jun 76

Z— ‘ Cr - BER

g7 Poly~EE/EP-76-§07 |~

NT NUMBER(s)

M. L./ Shooman |
S./Natarajan / F39682-74-C-9294 j —
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::ggﬂclzoig.EMENTT. PROJECT, TASK

Polytechnic Institute of New York
333 Jay Street

Brooklyn NY 11201 <
11. CONTROLLING OFFICE NAME AND ADDRESS 12.
Rome Air Development Center (ISIS) //9/ Janeame 1977 i
Griffiss AFB NY 13441 T NUMBER OF PAGES
77

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. DECL ASSIFICATION/ DOWNGRADING

N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
Same

18. SUPPLEMENTARY NOTES
- RADC Project Engineer:
Capt Alan N. Sukert (ISIS)

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Software Error Modeling Software Reliability
Error Correction Model Software Debugging Cost Model
Error Generation Model

0. ABSTRACT (Continue on reverse side if necessary and !dentity by block number)

Early software error models by Shooman and Jelinski-Moranda related the number
of errors in a large software system to the rate of error removal. Expressions
for the number of remaining errors as the software undergoes debugging were
formulated and additional assumptions were made to relate the number of residua
errors to the operational system reliability. One of the key assumptions of
the above models was that the sum of the errors removed and those remaining in

the program is constant. /‘\\

(cont'd)

DD , o'y 1473  eoition oF 1 nov 68 1f oBsoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Km Data Entered)

ver é/d 8 7/7

0

AL

| T




UNCLASSIFIED

\ SECURITY CLASSIFICATION OF THIS PAGE(When Dats Entered)

rs}his report adds a major refinement to the above models by introducing the

possibility of error genmeration during debugging. In this refinement the
error generation terms are modeled in several different ways: proportional
to the number of detected errors, corrected errors, the number of remaining
errors, or some function of these effects. The correction rate is assumed

to be a function of the manpower deployed on the project, thus permitting the
use of the model to investigate optimum manpower deployment strategies. The
effects on the economics of debugging due to error growth have also been

analyzed.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

b iexaes




ABSTRACT

Several previous models in the literature have discussed how the num-
ber of errors in a large software system is related to the rate of error re--
moval. In 1971 Shooman, and Jelinski and Moranda proposed similar Prob-
abilistic Models for the removal rate of software errors during software
development, The models proposed by Shooman were based on error data
on 7 different large operating systems and application programs and col-
lected by Hesse, and these models also fit the data of Akiyama which was
collected on small programs. Expressions for the number of remaining
errors as the software undergoes debugging were formulated and additional
assumptions were made to relate the number of residual errors to the op-
erational system reliability,

One of the key assumptions in the above models was that the sum of the
errors removed and those remaining in the program is a constant, Thus,
if we can estimate the initial number of errors in the system at the start of
debugging and keep careful records of those removed we have a good esti-
mate of the number of remaining errors. In 1973 Shooman described a test
procedure for estimating the initial number of errors,

In this work we add a2 major refinement to the above models by intro-
ducing the possibility of error generation during debugging. A generated
error is due to one of two causes; (1) a bug whose correction is invalid
and further debugging on the same statements is essential, (2) a new bug
which is generated as the result of the correction of a different error. The
error generation terms are modeled in several different ways: proportional
to the number of detected errors, corrected errors, the number of remain-
ing errors, or some function of these effects. The correction rate is as-
sumed to be a function of the manpower deployed on the project, thus, one
can use the model to investigate optimum manpower deployment strategies,
The effects on the economics of debugging due to error growth have also
been analyzed,

iii




CONTENTS

! Chapter Page
| Introduction 1
2 Summary of Existing Models 3

2.1 Introduction 3
2,2 Error Decay Model 3
2.3 Reliability Model 4
2.4 Summary 6
3 Survey of Debugging Data 7
3.1 Introduction 9
3.2 Large Program Data 7
3.3 Errors removed proportional to errors
remaining 7
3.4 Debugging Effort 8
4 Error Generation Model 27
4.1 Introduction 27
4,2 Model for Generated Errors 27
4,3 Contradictions and Basis for a Reformulated
Model 30
5 Error Correction Model 33
5.1 Introduction 33
5.2 A Two-Phase Model 33
5.3 A Manpower Limited Model 34
5.4 Summary 38
6 Debugging Cost Models 43
6.1 Introduction 43
6.2 Programming Economics without Penalty 43
6.3 Economics with Penalty 45
6.4 Summary 47
7 Conclusion 49
7.1 Summary 49
7.2 Suggestions for Further Work 49
Appendix I, Summary of Basic Models 50
Appendix 11 , Flowcharts and Program Listing 52
References 75




S ——————

Figure
3.1

3.4
3. 5a
3.5b
3. 5¢
3.5d
3. 5e
3. 5f
3.6
3.7a
3.7b
3.8
4.1

4.2

5.2
5.3
5. 4
6.1

LIST OF FIGURES

Title
Normalized error rate versus debugging time for
three Supervisory programs

Normalized error rate versus debugging time for
four Application programs

Cumulative error curve for Supervisory System A
given in Fig. 3. 1.

Cumulative error curves for some of the systems
in Figs, 3,1 and 3.2

Error rate curve and cumulative error curve for
Supervisory A of Fig. 3.1

Error rate curve and cumulative error curve for
Supervisory B of Fig, 3,1

Error rate curve and cumulative error curve for
Supervisory C of Fig. 3.1

Error rate curve and cumulative error curve for
Application A of Fig, 3.2

Error rate curve and cumulative error curve for
Application B of Fig, 3,2

Error rate curve and cumulative error curve for
Application C of Fig, 3,2

Hypothetical error mode! based on the profile of
curves in Figs. 3,3 and 3.5

Working time expended in debugging as observed
at Bell Labs

Computer time expended in debugging as observed
at Bell Labs

Cumulative curves on the occurrence of bugs for
each module of SAMPLE

Cumulative errors debugged versus months of
debugging

The model developed under the assumptions of
Case 4, Table A-1, Appendix I

Remaining error plotted as a function of months of
debugging

Unstable model controlled subsequently
The controlled model
The oscillatory model

Demarcation between debugging and rewriting regions

13

14

15

16

17

18

59

20

21

22

23

24

25

26

31

32

39
40
41
42
48

RS . B R R BANGA A A RTIO A aca™

TR ST




f
| 3 $
E ﬂ
| |
, |
{
, LIST OF FIGURES (continued) 1 i
l Figure Title Page
A2, 1 The system flowchart 52 :
A2, 2 Part 1 of the flowchart for case 1 53 | 4
A2, 3 Part 2 of the flowchart for case 1 54 i 1
A2.4 Part 1 of the flowchart for case 2 55
A2.5 Part 2 of the flowchart for case 2 56
A2, 6 Part 1 of the flowchart for case 3 57
A2, 7 Part 2 of the flowchart for case 3 58 ’
" A2, 8 Part 3 of the flowchart for case 3 59
1 A2.9 Part 1 of the flowchart for case 1 which is
compatible with the computer program 60
A2.10 Part 2 of the flowchart for case 1 which is

compatible with the computer program 61




P L R s L R TN

WEpS—————

LIST OF TABLES

E | Table Title Page
| 3.1 Change data for seven different programs 10
3.2 SAMPLE' structure and scale of each module 11
3.3 Relation between the bugs and the nature of
program 12
: A-1 Summary of error models 50
F A-2 Correspondence between Actual Parameters 62

and Program Parameters

vii

alnles. " ~c-n.'«-u.- e . " . by " el s




PR P ——

CHAPTER 1

INTRODUCTION

The concept of reliability as applied to the performance of computer
programs is in its infancy, Software packages with an ever increasing
degree of complexity have emerged in the last decade, It is therefore im-
perative to have highly reliable software systems when large software
packages are required to perform complex, real-time operations as, for
example, in the case of a moonlanding mission,

The theory of Software Reliability differs from that of Hardware Relia-
bility in that system failure is not due to part failures (which are due to a
variety of causes) but is caused by software bugs which are really latent
design errors, Once a software defect is properly fixed it is in general
fixed for all time., Failure usually occurs only when a program is exposed
to an environment that it was not designed or tested for. The large num-
ber of possible states of a program and its inputs make perfect compre-
hension of the program requirements and implementation and complete test-
ing of the program generally impossible. Thus Software Reliability is es-
sentially a measure of the confidence we have in the design and it's ability
to function properly in all environments it is expected to be subjected to,

In the life cycle of software there are generally one or more test phases
during which reliability improves as errors are identified and corrected.

The first few months of operation may include either: (1) a non-growth opera-
tional phase during which further corrections are not made (for practical
and economic reasons) and reliability is constant, or (2) further debugging
and correction of errors as they occur which essentially amounts to the use ,
of early operation as a final debugging test, ]

Reliability predictions are made based on the estimation of the number
of errors present in a program, In Chapter 2 is discussed some of the
pioneering work M1-3] done in this field. The approach used there was to
study the debugging history of previous programs similar to the one in
question, From these one determined constants for the model and made
predictions in the initial planning stages of the system reliability and the :
required debugging, Any change to increase the accuracy of the estimate 3
was made after error data was available for the current project. The er-
ror models were developed with the assumption that no new errors are
added to a program during it's debugging phase. In other words the cumu-
lative error correction curve approaches a horizontal asymptote, This
however is contrary to practical experience,

Discussions with program managers have revealed that a certain
amount of bug generation is associated with every debugging process.
Some of the ways in which errors may be generated are

0 The correction of a bug may work locally only (i, e., the
global aspects of the error still remain).

2, A typographical error may arise invalidating the result
of bug correction,




3. The correction is based upon faulty analysis, thus com-
Plete bug removal is not accomplished.

4, The correction is accomplished, however, it is accom-
panied by the creation of a new error,

5. Errors which are detected but not corrected, act in ;
many ways like generated errors, |

During the development phase we are faced with two classes of changes
in a program, those due to changes in the specifications (design) and those
necessary to correct software errors, Although both classes of changes
are important we only discuss the changes needed for error correction, In
evaluating the constants of the models from data, it is important to keep
careful records so one is able to differentiate between these two effects.

The concept of bug generation is analyzed in the following chapters.
In Chapter 5, a two-phase model for the error correction rate leads to
various possibilities for a hypothetical model., An economic analysis of
debugging follows in Chapter 6.




CHAPTER 2

SUMMARY OF EXISTING MODELS

2.1 Introduction

Earlier error models developed in the literature assume that the total
number of errors in a program is fixed and that if we record the cumulative
number of errors corrected during debugging, then the difference between
the initial number and the number corrected represents the remaining er-
rors. The reliability models to be discussed in this chapter relate the prob-
ability of encountering a software bug to the number of residual bugs, the
total number of instructions and the instruction processing rate,

2.2 Error Decay Model

Assuming that a careful record of errors corrected is maintained, a
graph of error correction rate versus debugging time may be drawn. The
debugging process starts with the number of errors corrected being equal
to zero, and the time axis starts at the instant the debuggers begin work,
The debugging rate is defined as

rc('r) = errors removed/debugging time T (2. 1)
Using Eq, (2.1) a cumulative error curve , n (1), can be defined as

T
n ()= [r_(x)dx (2.2)
0

Solving Eq. (2. 2) for rc('r), the slope of the nc('r) curve, we obtain

dnc('r)
rc('r) = e (2.3)

If we assume that the total number of errors in the program, n, re-
mains constant, then the curve n_(7) approaches n, asymptotically t;or
large 7., Assuming that all detected errors are corrected we can write
for the remaining errors n(r)

n(7) = n, - nc('r) (2. 4)

If we further assume that in any sizable program it is impossible to remove
all errors, then

n (1) < n, (2. 5)
and

n(r)> 0 (2. 6)

sl sion,

=G I




2.3 Reliability Model

In order to formulate a reliability model, we assume that operational
software errors occur due to the occasional traversing of a portion of the
program in which a hidden software bug is present, An expression for the
probability that a bug is encountered in the time interval At after t hours
of successful operation may be derived. This must be proportional to the
probability that any randomly chosen instruction contains a bug. If we fur-
ther assume that all instructions are equally likely, and that all bugs are
homogeneously and randomly distributed, then the probability that a ran-
domly chosen instruction contains a bug is given by the number of errors
normalized with respect to the total number of instructions ec('r) = nc('r)/IT
where IT = total number of instructions,

From reliability and probability theory [11] it is obvious that the prob-
ability of failure in the interval t to t + At, given that no failures have oc-
curred till time t is proportional to the failure rate (hazard function) Z(t).
Mathematically we may write the above argument as

Plt< t < (t+ At)/t. > t] = Z(t) At = k, e (1) rpAt (2.7)
where
te = operating time to failure (occurrence of a software error)
kl = an arbitrary constant
e (1) = number of remaining errors normalized with respect to
r ‘ : :
the number of instructions, i,e., n('r)/IT
rp = the rate of instruction processing

"In the past there have been difficulties in defining r _ since for each
loop, the rate at which the instructions are processed vdries, Also if in-
terruptions or jumps or calls to subroutines occur the processing rate
varies, To overcome this problem a simplified model is used,

z(t) At=k er('r) At (2, 7a)

where k 2 an arbitrary constant which must be measured for the particular
program = k1 rp.

From reliability theory [11] it can be shown that the probability of no
system failures in the interval (o, t) is the reliability function which is re-
lated to the hazard function by

t
R(t) = exp { - [ z(x) dx (2. 8)
0

S S s i o it b




Substituting for z(t) from Eq, (2, 7a) into Eq. (2, 8) and assuming k and
er('r) are independent of operating time t we obtain

R(t) = exp{-k er('r )t} = exp(yt) (2.9)

Equation (2, 9) states that the probability of successful operation without
bugs is an exponential function of operating time,

Using the reliability model the MTTF, mean time to (software) failure
can be easily computed [1]

00
MTTF = [ R(t)dt (2.10)
0

Explaining the above set of equations we find that to measure the parame-
ters in the model we have to work backwards. By operating the program
in a real or simulated manner MTTF [1] can be observed. Substitution
from Eq. (2.9) into Eq. (2.10) yields

00
MTTF = r exp(-yt) dt = 1/y (2.11)
0

By substituting Eqs. (2.2, 2,4 and 2, 9) into Eq. (2. 11) we obtain

n, T rc(x) dx
MTTF = 1/k :, i /T T (2.12)
T 5 T

Assuming that careful error records are kept,

T
f T, (x) dx
0

is known, The two remaining parameters to be determined, k and n.,
are determined by measuring the MTTF at two different values of t, If
we further assume that rc(-r) is a constant equal to T then Eq, (2.12)
reduces to

MT [k : o )
TF =1 i, U (2,13

As we said earlier, if we work backwards with a record of MTTF and with
a knowledge of r , 7, I and k, n, can be computed using Eq. (2.13).

T 1 PR i LY S o e Y . O A 18 1 O R R A {3 i Y SRS T

Aot A




P

2,4 Summary

In the foregoing discussion it has been assumed that the total errors
which is a sum of those errors remaining in the program and those elimi-
nated remains constant during the debugging process, This assumption has
been made in order to predict a behavior with less mathematical complexity.
In reality there is a generation of errors associated with correction, As a
result of this the total number of errors increases with time. Such a beha-
vior of bugs will be investigated in the following chapters.

pwwn

A




CHAPTER 3

SURVEY OF DEBUGGING DATA

3.1 Introduction

To derive accurate values for model parameters and to verify the valid-
ity of the models a wide range of data is necessary. However, one can es-
tablish the model with limited data and refine the parameters (and perhaps
the form) of the model with data which will be available at a later date, The
data discussed in this chapter can be used to determine the parameters of
the models in Chapter 2 as well as those in the following chapters,

3.2 Large program data

Seven different programs were studied in the literature [1] and the er-
ror content (number of errors removed) was recorded, These are shown in
Table 3.1. Figures 3.1 and 3. 2 show the normalized changes recorded
every month. From those figures we observe a generally decreasing trend
in error rate versus debugging time, One possible explanation of this phe-
nomenon is, if debugging is efficient then the errors decrease with time, If
fewer errors are present then the number of errorsdiscovered and removed
are also few, This above argument is at present unsubstantiated and may
be thought of as a hypothesis.

3.3 Errors removed proportional to errors remaining

One of the error models proposed by Shooman [1] is that the number of
errors removed is proportional to the number of remaining errors. Mathe-
matically we may write *

r(r)=k (n -n) (3.1)
where

rc('r) = error correction rate

n, = total errors, i,e., sum of those removed and those remaining

L number of errors removed

kc = a constant of proportionality

dnc

since rc('r) e (3. 2)

*The notation in this report differs slightly from that used in the literature,

7

b i




If we assume no new errors are generated and that all errors detected are
immediately and perfectly corrected, then

e T | (3.3)

dr eVt c £
or

dnc

b ek g LR S 59

A solution of Eq. (3. 4) yields
nc('r) =n + A exp(-kc'r) (3. 5)
Using the initial condition that nc('r=0) =0at 7= 0 we get A= -n.

Thus the cumulative error correction curve becomes the exponential
rise to the asymptote n,

n_(7) = nt{i - exp(-k_7)} (3.6)

Figures 3,3 and 3,4 are plots of cumulative errors corrected from the data

in Table 3.1, These curves have a profile similar to an exponential only
during the later part of debugging. Therefore, Eq. (3.6) cannot entirely
describe these curves, To understand the dynamics of error behavior, the
data from Figs, 3.1 and 3,2 is redrawn as continuous curves in Figs,
3.5(a-f)y The scales are suitably normalized. Let us postulate a model in

which error correction rate per man-month decays exponentially (Fig. 3. 6a)
during the course of debugging. If we further assume a triangular distribu-
tion of manpower as illustrated in Fig. 3.6b, then a product of the ordinates

of the curves in Figs. 3.6(a and b) gives rise to the number of errors cor-
rected per month. The resulting curve Fig, 3.6c rate appears to be some-
what similar to those in Figs. 3, 5(a-f), and an integral of this curve (Fig,

3, 6d) over the debugging period gives the cumulative errors corrected, We
are, however, unable to compare quantitatively the hypothetical curve with

those obtained using the data, because a comparison depends upon the scales

used and the scale for the hypothetical curve is not based on data. In con-
clusion we may say that the error model as shown in Fig, 3. 6 resembles
the profile of some of the experimental curves shown in Fig, 3. 5.

3.4 Debugging effort

Before we can postulate an error model it is advisable to refer to other

developments that have taken place in this field, An experiment on debug-
ging of a 4000 machine language program was conducted at Bell Laborator-

ies[6], In conducting this experiment programmers were asked to fill a cer-
tain Trouble Report/Correction Report (TR/CR) form and another supplemen-
tary formin order to derive relevant informationregarding the nature of bugs.

Sixty-three such forms were completed. Out of the 63 TRs generated, 11
contained no errors and 7 contained minor annoyances which would in all

8

S e y

PO




probability not be defined as a bug. Thus there were 45 real errors. This
works out to be approximately 1% of the total lines of code which the pro-
grammers declared to be in agreement with previous data. One of the out-
comes of this experiment is a record of the time taken to remove each error.
Figure 3.7 shows the working time and computer time expended in the de-
bugging process. A careful examination of this figure reveals that except
for a few spikes, the time expended while working on most of the errors is
approximately the same. This leads us to conclude that the rate of error
correction is a constant. We will use this assumption in Chapter 4 and prove
that it leads to anomalous results.

F. Akiyama [8) reports another study on software debugging. At Fujitsu
Limited in Tokyo a system called SAMPLE (running under the Monitor V of
FACOM 230-60 the Fujitsu large-scale computer)was developed. The
SAMPLE consists of seven modules and was programmed in FASP, the
assembler language for FACOM 230-60. The program sizes and the organi-
zation of SAMPLE are shown in Table 3,2. Table 3. 3 shows the relation-
ship between the nature of the program and the occurrence of bugs for each
module, while Fig. 3.8 portrays the cumulative number of bugs as a function
of the development time. A careful examination of Fig. 3. 5 shows that the
error correction rate was not a constant all through the process of debugg-
ing. It decreased toward the later part of debugging. All these curves have
a horizontal asymp*tote which shows that the number of errors corrected
reaches a saturation level, Calculation of the cumulative error curves from
the data in Ref. { 1] displays a similar behavior. (Also illustrated in Fig.34)
We will concentrate on this idea and use it in the following chapters.

Having reviewed some of the available literature in this area, we should
now be able to proceed further with our error model.




e 1 i —————

(} @douszeyoy 298)

| L1 o

8
sZ°o0 09 20°0 S L
ez’o 0S 0S °0 0z} 81°0 LE 9
8L°0 08} IiL°0 oLl 1 g2t S
3 oo¥ szl 00¢ 20°2 o2y 1 4
91 °2 L6V 08 °1 (1334 88 0 S8l €
vzl 82 912 02s vi°l 8€2 (4
; .01 x86° see nnounwc.— 0S¢ g-01 x2S 0 (2% 1
Qeul/seBusyy soBuwyD ‘jsul/eeBuvy) soBuvyy Ssul/soBueyD soBuUTYD PUOW
m 3897 000 ‘0€2 38uI 000 ‘0¥2 *38uT 000 ‘0712
0 Aiosjazedng g Azosjazedng v Liosjazadng
£1°0 It
) 801} 4
69 °0 991
20°) 6v2
, 13 2} LEE
! S °1 89¢
99 °0 8S1 s2°0 09
9L°0 €81 €20 SS ¥ °0 80} 9
1€°1 Vit L0 vLl 62 °0 0L 82 °1 80¢ ]
vl 962 3 $t4 90S 08 °0 261 L2 299 4
21l 692 ve'l L62 1IS°1 29¢ Gi°t ¥SL 13
99 °1 L6t 99°1 86¢ LS°1 9LE c8 °¢ 926 [4
naou x8E°} 1317 nuc- X 86 °0 1 X4 n-o— x 9L°¢ S06 nu°— xGj°2 vis I
Jeu/esfueys §9Busy)y Geuj/seBuvys soBuwyy Jeul/seBueys seBuvyy Jeul/ssBuvyy eeBUTYD IUOW
“8uT 000 ‘0¥2 3I8uT 000 ‘0¥2 *38u1 000 ‘0¥2 *38UT 000 ‘0¥2
a uoResfddy O uopesyddy € uopespddy Vv uopedsjiddy

SAVEDOUd LNIUILJIA NIATS YOI VIVA IDNVHD 3
1°¢ ITAVL




o - - —r e v et T YT ST = . et et 1..1

TABLE 3,2
SAMPLE' structure and scale of each module
Module Program steps
name (Kilo step) Note
MA 4,03 experimental i
module
MB 1.32
MC 5. 45 :
MD 1. 67
ME 2,05
MF 2. 51
MT 2.10 Common program
table and message ,
string ;
Total 19.13 i

(see Reference 8)

i




B I R SO T e 3 " e g———

(g @ousaazay 99s)
sfoquids [[ed> auInoI-qns Jo IdquInu ¢
s[oquiis UOISIO9P JO IAqUNU (T
(ITINVS
jo Bupsys 3fessaw pue I[qEY UOIIEITUNUIWIOD) IJA 2MPOW JO B}ep SIPN[OXd 3[qe} STYL {s30u
e = ne 01°} b8 *2 LbE P86 2021 8L} 2S0L1 1303
qns
09°1 98 ‘0 16 °0 Lyl LE 13014 981 Lie €162 JIN
() 4 11 | 8¢t°1 9% °¢ |72 2Is L6} Gi¢ 1502 A\
11 2 | 99 °0 L0°} GS°J 9¢ e 0€1l (32 PL91 an .
L9l 10°1 10°} oL} €6 v16 29¢ 26¢ 1344 41 ON
¥6 1 19°1 69°0 GE°} 81 652 144 0 ¥4 62¢1 gan
u 29°1 26°0 SS °1 2S 2 201 G6G9 €8¢ 2LE 2€0¥ VN
, (@) |(c+a) (1) (@ (s) 2IMPON
sis(Plos=(Ror=(Dboos =&y | JJ |0 1D e Deal edee
Jo wrexdoxg
Lnounag s8nq 103 onyey | xaquuny wexdoxd jo aanjeN
wrexdoad jo samyeu ayj pue s8nq owﬂ u9s9m3aq uor}erday
v €€ HT1dVL 3




T o T T Y g e e

el e L s

(1 @2uaxajay 2ag) *swerfoad Axostazadns
922y} 103 awr) Surddnqap snsiaA 3jer 10119 pazrirewaoN [ ‘¢ ‘Srg

0 Kiosisadng g Ksosmiadng v Kiosjasedng
9GH ¢ >
«N.o o»wnvnu_o swnenu_o 3 “
]
10'1 o'l 101 W
{02 {oz loz @
S
do'g {ot {oe a
g
, 3
>
»
oY)




bl o e e ; .

o)
_K
gaop 40 4.0r
gs B 30 3.0f
320 2 &j
g
§10 1.0 I
(%]
£ 0123456 0f2345 0Ol234567
v-months
Appl. A Appl.B Appl. C
20
1.0 :

O 2 4 6 8 10 12
Appl. D

Fig. 3.2 Normalized error rate versus debugging time for four
applications programs. (See Reference 1)

14




(1 @ouaaxajay 29g) °[ 2andrg
ur usa18d y wajisAs Aiostazadns 103 2AIND 10133 dAne[NWIND ¢ ‘¢ ‘S g

syjuop — 2 -awiy bBulbbngaqg

L 9 b _n 2 _ 0

I I } .ﬂ\‘. T

W=

{ AR
0 < (2]
-+ (1)>

Ol X UOHIDNJISU|/SI044F  dAjD[AWND

e=

' o

GlES @E; =S a2 a— -_—— G- S S, | emme I.'lll'[!

Ihw

15




Cumulative Errors Removed / Instruction x10°

o | 2 3 4 S 6 7 8

Number of months of Debugging

Fig. 3.4 Cumulative error curves for some of the systems in
Figures 3.1 and 3,2 (See Reference 1)

16




No. of Errors

Cumulative Errors Corrected Corrected /7 month

60 |-

40 -
30r
20

o)
T

| (NI T | 1 St (AT ) PR [ | R |

o)

Fig. 3, 5a

2 4 6 8 10 12 14

Number of Months of Debugging

Error rate curve and cumulative error curve for
supervisory A of Fig, 3.1 (Suitably normalized)

(i) Envelope of the error rate curve for Supervisory A
(ii) Cumulative error curve for Supervisory A (see
Reference 1)




No. of Errors Comected/mo:

Cumulative Errors Corrected

W
o
)

(i)

O 1 | | | L R | i

| 1

1
0 2 4 6 8 10 12 14

Number of Months of Debugging

Fig. 3.5b Error rate curve and cumulative error curve for
supervisory B of Fig. 3.1 (suitably normalized)

(i) Envelope of the errcr rate curve for Supervisory B

(ii) Cumulative error curve for Supervisory B (see
Reference 1)

18




No. of Errors
Corrected/month
o
||

Cumulative Errors Corrected
)
o
[}

O | elChe TSN (ORI (SRR (IR [SRSwy |SS |  TE | P

1
0 - 4 6 8 10 12 14
Number of Months of Debugging

Fig. 3.5c Error rate curve and cumulative error curve for
Supervisory C of Fig. 3.1 (suitab'y normalized)

(i) Envelope of the error rate curve for Supervisory C
(ii) Cumulative error curve for Supervisory C (see
Reference 1)




Cumulative Errors Corrected No. of Errors Corrected/month

40
35|

25 I
20
IS |
10|

140 -
120 -
100 |

L 1 L L 1 L 1 1

| |

0 2 4 6 8 10 12
Number of Months of Debugging

Fig. 3.5d Error rate curve and cumulative error curve for
Application A of Fig, 3.2 (suitably normalized)

14

(i) Envelope of the error rate curve for Application A

(ii) Cumulative error curve for Application A (see
Reference 1)

20

.




No. of Errors Corrected/month

Cumulative Errors Corrected

40
35|
30
25|
20

IS+

0

(i)

ubbae ‘iplui ”

1 1 1 1 1 1 1 1

1 1 J

Fig. 3. 5e

2 4 6 8 10

L
12 14
Number of Months of Debugging

Error rate curve and cumulative error curve for
Application B of Fig. 3,2 (suitably normalized) 3

(i) Envelope of error rate curve for Application B
(ii) Cumulative error curve for Application B (see
Reference 1)

21




No. of Errors Corrected/mo.

Cumulative Errors Corrected

(i) |1

1 1 = 8 1 T S | | 1 1 L 1 1 J

Fig. 3. 5f

2 4 6 8 10 12 14
Number of Months of Debugging

Error rate curve and cumulative error curve for
Application C of Fig. 3.2 (suitably normalized)

(i) Envelope of the error rate curve for Application C
(ii) Cumulative error curve for Application C (see
Reference 1)

22

—




= = M N
O 00 O WU

Removed/month
@)
3

(@)

g 12
F &9
o a
85 6
g 3
2

£
=
(@]
ol
o
i
£
&

Cumulative Errors
Removed

O 1 1 1 1 1 1 1 1

1 L

0 2 4 6 8 [0) 12 14

L

Number of Months of Debugging

Fig. 3.5 Hypothetical error model bascd on the profile of curves in

Figs. 3.3 and 3,5

(a) Variation of error removal per man-month over the
debugging time

{b) Variation of manpower over the debugging time

(c) Variation of error removal per month over the
debugging time

(d) Cumulative error removal

23




Working Time -fo. Diagnose
ond Correct, Compored.....

g
14t

Working Time To 7
Diognose (Hours) ¢f

'. Lt d b

TR/CR Number O |

5 b
Working Time To?
Correct (Hours) }‘

28

T

I
"o w|'2° =

42,47,50,
55,58,60,63

No Err:r- 19,24,26,33,

35

Fig. 3.7a Working Time expended in Debugging as observed at Bell
Labs.

(See Reference 6)

st




Computer Time fo Diagnose
ond Correct, Compored......

Computer Time to
Diagnose (Minutes) 30

20

10
TR/CR Number 0

10 o] 20 30 40 60
Computer Time to gg No Error~ 19,24,26,33,42,47,50,56,
Correct (Minutes) 58,60,63.

Note:= Sce Note' for® Figure 6
2 hours

Fig. 3.7b Computer Time expended in Debugging as observed at
Bell Labs., (See Reference 6)

25




(8 2dud1330y 235) ‘ATJWVS Jo SINPOtie
Yd>®d 103 s3Nq JO 2OUIIINDO0 Y3} UO SIAIND IATye[NWNT g *¢ *Srg

quow L. Qe Souwy S % e

il

i

{

\ |

|

4

R
|

\
’\\\\\ﬁ'\..

e \.alb".....“.“.\l\.n...“?\\..“...\\. 1°¢
on \ 2
oA
L . \ - los ..M
/ g
Vi .l\\..l.l.lql\!l\.\ 06
.
atnpayde 4 a8 ; v aa 54
wawdotaasp i dv

26




CHAPTER 4
ERROR GENERATION MODEL

4.1 Introduction

In Chapter 2 we discussed an error model in which the total number of
program errors remained constant, At this point we examine the assump-
tion that it is feasible to debug without generating an error, Most software
personnel agree that there is a certain generation of errors associated with
correction, The ways in which errors are generated was discussed in Chap-
ter 1.

Depending upon the efficiency of debugging, the error generation rate
could be greater than, equal to or less than the error correction rate., The
resulting error behavior in the three cases is shown qualitatively in Fig.
4,1. (Figure 4.1a is a particular casc where there is no generation of er-
rors) [3]. The time 7, is when debugging stops. Note that the number of
errors remaining > 0, "in each case.

4,2 Model for Generated Errors

We wish to develop a set of equations which will describe the above
cases. We begin by writing a difference equation for the number of errors
in the program,

Errors present at time T = [Errors present at time 'ri_i]

+ [Errors generated in the interval ('ri- i-i)]
- [Errors removed in the interval (1-1_¢)
If we let
ng('ri, Ti-1 )= number of errors generated in the interval ('ri-'ri_l)
nd(Ti' 'ri_i)= number of errors detected in the interval (Ti"ri-l)

nc('ri. Ti-i)= number of errors corrected in the interval ('ri- i-i)

then the number of errors remaining in the program at time Ty n('ri), is
given by the following difference equation

BeR) = e t e ) -l Tg) (4. 1)

Conversion of the above difference equation to a differential equation is per-
formed by grouping terms, dividing both sides by ('ri--'ri 1) = AT and taking
limits &

27




e

n(7.) - n(7. ,) n (1,7 ,) n_ (7, 7. _ )
lim 1—A L2 S lim _g______g‘rl-i - lim B I.A: 1
AT—0 » At—0 AT—0
(4. 2)

The left-hand side of Eq, (4, 2) is recognized as the rate of change of er-
rors remaining, i.e., the derivative of n with respect to 7. The right-
hand side is composed of two terms, which as the limit is approached ]
become the rates of error generation and correction respectively. The no- i
tation for error rates is given below
rg(Ti) 2 Generation rate of new errors at time 75
rc(-ri) 2 Correction rate of errors at time s

rd('ri) ) Detection rate of errors at time T

Using the above definitions, Eq. (4.2) becomes

D= ror) - x () (4.3)
In Eq. (4.3) the term accounting for error generation includes all the five i

cases discussed in Chapter { which are created by debugging changes, In
a process where debugging is efficient, the generation rate is smaller than
the correction rate and the number of bugs in the system decreases. A
steady state is reached when correction decreases so that dn(7)/dT = 0.
(See Fig., 4.1a and b) Let us hypothetically say that the correction rate is
proportional to the detection rate,

r ()= B ry(7) (4. 4)

In the ideal case, all detected errors are immediately corrected and
B= 1. However, in practice 0 < B< 1 because some detected errors may
be incorrectly fixed. The latter effect adds to the generation as previously
discussed,

The generation effect is more complicated to model. If we assume tha-
the generation rate is proportional to correction rate, then

rg('r) =a rc('r) (4. 5)

Combining Eqs, (4.3), (4. 4) and (4. 5) yields

dn(7]

= ar (1) - Bry(r)= Bla-1) ry(7) (4.6)

Inspection of Eq. (4. 6) shows that the effect under these assumptions
for the normal case where a < { is that the number of errors decreases.

28




1
{
{
|

However, if a> 1, generation exceeds correction and the result illustrated
in Fig, 4.1c is obtained, If o= 0, there is no generation, but in general
0 < @ < 1 and the effect of error generation is to reduce the effective cor-
rection rate (see case 1, Appendix I). From the solution we can see that
for large 7, n(1) becomes negative which leads to a physical contradiction,

We may explore a different model by assuming the detection rate is in
turn proportional to the number of remaining errors, This leads to Case 3
of Appendix I, and n(7r) is a decreasing exponential, This result agrees
with only a part of the experimental data reported in the literature [1, 8],
since shapes other than decreasing exponentials have also been observed
for n(1).

A different hypothesis is to assume that generation of new errors is a
function of not only the detection rate, but also the number of remaining er-
rors. Clearly, the larger the number of detected errors, the more are the
changes required and the probability of creating an error increases, Also
each time we make a change there is a chance that this will interact with
existing errors and create new errors via the interaction. Assuming gene-
ration is a simple product of these two functions and correction is as given
in Eq, (4. 4) (with B replaced by b) we obtain

rg(-r)= a n(7) rd('r) (4.7)

rc('r) =b rd('r) (4. 8)

where a and b are proportionality constants, Substituting Eqs. (4, 7) and
(4. 8) into Eq. (4.3) we obtain

dn(7)

aT =a n('r) rd(‘r) -b rd(T) (40 9)

If we make the further assumption that the detection rate is a constant, r ,
Eq. (4.9) becomes o

dn(7) _
-_é'r_)- ar n(r) - b . (4.10)

The above differential equation can be readily solved by taking Laplace
transforms or by classical differential equation theory yielding

n(7) = (n, - b/a) exp(a r,7) + b/a (4. 11)

where n(r = 0) = n_.

The behavior of Eq. (4. 11) depends upon the relative values of n_ and
b/a. Since the probability of n_ being exactly equal to b/a is very 18w,
we are left essentially with two possibilities, If - Ty b/a, then n(r) builds

29




up exponentially. If nj < b/a, the number of errors decreases and becomes
negative for large 7. The two cases are illustrated in Fig. 4.2, and Case
4, Appendix I,

4,3 Contradictions and Basis for a Reformulated Model

A negative number of errors has no physical meaning, thus some cases ]
. of the models given in Table A-1 lead to a contradiction. Either the initial j

assumption and the model are only valid for a short time period or our ini- :
tial assumptions were wrong., In fact we have assumed several models for
error generation and have rejected the results (Eqs, 4. 6 and 4. 11) because
the remaining errors went negative or the cumulative error correction
curve did not resemble those observed experimentally. We now turn to-
ward models for the error correction rate which may be more realistic,
so as to obtain an expression for n(r) which does not violate physical rea-
soning and fits the experimental data,

Programmers have reported that initially the bugs are easily removed.
Only in the advanced stage of debugging, does the error removal become
intricate. Although Shooman and Bolsky [6] present evidence that the effort
to fix a bug is the same for early and later bugs, they did not feel the re-
sult was in itself conclusive enough to overturn the intuitive hypothesis that
the later bugs are the hard ones to fix. In Table 3.1 and Figs. 3.1 and 3,2
we observe a decreasing trend in the correction rate with debugging time.
Based on this fact if we assume that correction rate is proportional to the
number of remaining errors, then this leads to a cumulative correction
curve which does not conform to experimental results, A more complex
model with features from both of the two extreme possibilities is developed
in the next chapter.

30




NORMALIZED
CUMULATIVE ERRORS DEBUGGED
Ey/1
dar) /1y
= — — — — k———ERRORS REMAINING

ERRORS CORRECTED
-~ T
T~ MONTHS OF DEBUGGING
(@) APPROACHING EQUILIBRIUM, HORIZONTAL ASYMPTOTE, NO GENERATION OF NEW ERRORS.

ERRORS ADDED
= T _—="F—~———ERRORS REMAI¥ING

r

ERRORS CORRECTED

€T)

T T

(b) APPROACHING EQUILIBRIUM, GENERATION RATE OF NEW ERRORS EQUALS ERROR
REMOVAL RATE.

ERRORS AODDED

L {Cg)
ERRORS REMAINING
ERRORS CORRECTED
r 7§
(¢) DIVERGING PROCESS, GENERATION RATE OF NEW ERRORS EXCEEDS ERROR
REMOVAL RATE.

Fig. 4.1 Cumulative errors debugged versus months of debugging.
(See Reference 3)

31

sl

T

i
]f




Total “errors

rc_/

Errors remgining
SN

Errors removed

Y

(a) The case where no > b/a

Total errors

Errcrs remairing

V-—Errors removed

(b) The case where no < b/a

Fig. 4.2 The model developed under the assumptions of Case 4
Table A-1. (See Reference 4)

32




CHAPTER 5

ERROR CORRECTION MODEL

5.1 Introduction

In Chapter 4 we found that our assumption of constant error correction .
rate resulted in the number of remaining errors eventually going negative, ‘
This leaves us with several alternatives.

1. We can discount the results of the experiment conducted
at Bell Labs [6]

2. We can accept the earlier hypothesis that the correction
rate is proportional to the number of remaining errors

3. We could formulate other hypotheses.

There is no definitive answer to these questions, We could argue
against the experiment conducted at Bell Labs [6] in two ways, On the one
hand this conclusion was based on the results of just one experiment con-
ducted on a program which can be considered as between a small and me-
dium sized program, Secondly, the reference did not discuss generation
rate of errors, In Chapter 4 we attempted a few models for error genera-
tion, Eqs. (4.6) and (4.11), and found the results unsatisfactory. We
now turn our attention toward other models for error correction. }

5.2 A Two-Phase Model

In earlier work [1, 8], a decreasing trend in error correction rate has
been observed towards the later part of debugging, Figures 3.3, 3.4 and
3. 8 illustrate this fact. On the other hand, Shooman and Bolsky [6] ob-
served a constant correction rate, Also, discussions with program mana-
gers have led to the conclusion that correction rate is sometimes manpower
limited. Thus, we postulate a new model where the correction rate remains
constant during the early stage of debugging (manpower limited), We as-
sume that later in the program another stage is reached where the correc-
tion rate is proportional to the number of remaining errors, During both
these correction stages we assume the error generation rate is proportion-
al to the product of the number of remaining errors and the number of de-
tected errors as in Eq, (4.7), The transition from the early stage model
of error correction to the later stage model may be considered to occur at
a critical value of the remaining number of bugs which we call n. These
assumptions lead to

rg =Py n(t) rd(-r) for all n(7) (5.1)
r =P, ry( for all n(r) > n, [Region 1] (5, 2a)
=P, n(7) r4(7) for n(7) < n, [Region 2] (5. 2b)

where Py» Py) P5 are constants of proportionality.
33




If we make the further assumption that rd('r) is a constant we obtain

rg = a, n(1) (5. 3)
. k1 for n(7) > n, (5. 42)
= kz n(r) for n(71) < n, (5, 4b)
where
3y = Py Ty4l7)

ky = Py Tql7)
k, = py 147}

5.3 A Manpower Limited Model

The model which was developed in the previous section retains the as-
sumption made in Chapter 4 that the error generation rate is proportional
to the number of errors remaining [c.f., Eq. (5.3)]. However, the correc-
tion rate is governed by Eqs. (5. 4a and b). Rewriting Eq. (4.3) for con-
venience we have

d—r:i(‘rl’: rg('r) - rc('r) (5. 8)

Substituting Eqs. (5.3) and (5. 4a) into Eq. (5.5) we get for the early
phase where n(7) > n, (called Region 1)

d—rg:—) = a, n(7) - k, (5. 6)

The solution of Eq. (5. €) is accomplished in a manner similar to Eq.
(4. 11) yielding

a,T
n(r) = (no - ki/ai) e i + ki/ai (5.7)

where

n(r = 0)= n,

If n_> k,/a; the debugging is out of control and Eq. (5.7) indicates that
the errofs bu’ild up exponentially with time, * On the other hand if n < ky /ai,

*Discussion with experienced software managers have verified that on rare
occasions debugging does go out of control and either the program is
scrapped and rewritten or a new team of 'Super Debuggers' is brought in.

34

ey




S —

L —————————————

T i

the correction process is efficient and the errors reduce with time. Once
the errors fall to the critical valuen,, a transition takes place in the error
correction rate andsubstitution of Eqs. (5.3) and (5. 4b) into Eq. (5.5)
yields

dn(T - al n(r) _kz n(-r') (5-8)

Letting the time elapsed in reducing the number of errors to nj be Ty, ®
solution of Eq. (5.8) yields

n(t) =n expl () - k) (7-7))] (5.9)

The conditions under whichthetransition occurredare explained as follows:
As the errors decrease the number of men employed is also reduced L9l.
Since we intuitively feel that the later bugs are harder to fix, even if we
maintain the ratio of the number of errors to number of men constant we
will observe a decreasing correction rate. (Note, this contradicts some of
the results of Ref. 6.) We have assumed an abrup* change in the number of
men <mployed to reduce mathematical complexity. In practice the change
is gradual.

Eq. (5.9) in itself gives rise to two cases depending upon whether
l>k2/al or 1< kZ/a1 Il < kz/al, then n(7) decays exponentially to zero

as 7 goes to infinity. On the other hand, if 1>k /a, then n(7) increases
exponentially, thereby re-entering Region 1. A“physical explanation for
why the switch in regions may occur is that the quantity k, is associated
with the reduction in manpower. As testers are removedzfrom the project,
k. decreases. If these testers are removed prematurely, k, may decrease
t& the extent that 1 > k_/a 1 thereby causing a re-entry into l@egion 1.

With increasing erroré2 some personnel are brought back and a transition
to Region 2 will soon occur. We thus can have an oscillating model. It is
convenient to categorize the model as

Case 1 The Unstable Model
Case 2 The Controlled Model
Case 3 The Oscillatory Model

The three cases are illustrated qualitatively in Fig. 5.1 and summarized in
Case 5, Appendix I. We will analyze each case separately.

Case 1

In Fig. 5. 1a the errors are seen to diverge exponentially. If the software
personnel are not sufficiently experienced, a more experienced team could
be brought in to replace the current one. At this point let us say, the
errors have built up to n' at time 7', The newteam establishes different values
for k) and a, (vize kY and a'l ) such that n' < ky /a.'l t

35




The equation describing error correction is

nc('r)= kiT for 7< T (5. 10)

while n(7) is described by Eq. (5.7). The total number of errors at any
time is the sum of those remaining and those corrected, resulting in

n (r) = n(7) + n_(7) (5.11)
For 7> 7' the error equation can be written using Eq. (5.7) resulting in
] ! ! |} !
n(r) = (n' -kl/ai)exp[al('r-'r')]+k1/ai (5.12)
The error correction is given by

n ()= k R k'1 (r-7') (5.13)

1

Equations (5. 12) and (5,13) are applicable between 7' and 7,, where Ty is
the instant of time at which the errors fall to the critical value n,. Beyond
the error equation is defined by Eq. (5.9). To compute the number of

el-rors corrected we can rewrite Eq. (5. 4b) as

dnc('r)
o =.k2 n(t) which results in
nc('r) = f kZ n(r) dr
? or
n (1) =k,n, [ exp[(ay-k,)(r-7,)] dr
or
kany '
n (1) == exp[(a 1-kz)('r-'ri)] +C (5.14)
)

Using the boundary condition that n, ('r )=k, 7' + k (r,=-7") which is true
from Eq. (5.13) the number of corrected erl-ors in bq. (5. 14) may be
written down as

k n
n (r)= kv K, (v -7") + -,-2-— fexpl(a’y -k, )r=7,)] =1} (5. 15)

1k2

36

!
:




Case 2

The initial stage here is described by Eq. (5.7) with n_< k /ai. The
correction is governed by Eq., (5.10) except for the fact tha? the equation
holds till time 7,. The errors fall exponentially and a transition occurs
at 7, beyond whfch the error model is described by Eq, (5.9), with
1< ]12./3'1' The correction curve beyond T is described by Eq. (5.14)

:i;h only a difference of a; replacing ai and the boundary condition
eing

n.(ry)= k7,

The correction curve is therefore described by

k,n
2 1
nc('r) = kiTi + _ai'kz {exp[(ai -kz)('r-'r1 )] -1} for 7> Ty (5. 16)

Case 3

'n the case of the oscillatory model a substantial number of errors have
been removed and if the oscillations can be broken the system debugging can
be promptly completed. As explained earlier one of the reasons for k) be-
ing less than a, is that the reassignment of some of the debuggers was done
prematurely, if the transition had occurred at a lower value of n, the pat-
tern might have been the same as in Case 2, Therefore, once the process
goes back to Region 1, the software manager may increase the debugging
personnel. If this is effective we may stay in Region 2 till completion of
debugging; however, if personnel are removed again we may restart the
oscillatory behavior.

Here the initial behavior of errors is given by Eq. (5.7) with n_< k,/a
while the correction is described by Eq. (5.10). Upon a transitionatn= n
the model obeys Eq. (5.9) with 1 > k /ai. After transition the correction
is described by Eq, (5.16). n(r) now increases to n, at time 7, at which
point another transition (this happens due to personnel being brought back)
i occurs bending the error curve downward, Under these conditions the mo-
i del is described by an equation similar to Eq. (5.7). The equation is

i

n(r) = (n, - ki/ai) expla, (1-7,)] + kl/a1 (5.17)
Using Eq. (5.16) the correction curve can now be written as
kzni
nc('r) = ki"r1 + ZFI‘_z_ {ex'p[(at-kz)('rz-'ri)] -1} + kl(’r-ﬁ' Z) (5. 18)
for 7> T,

The errors now fall until a critical point definedby n= ns*at T3 when another

*n, is set smaller than n, to avoid oscillations, Under these conditions Re-
g?on 2 includes the zone where n < n,. The software team now establishes
a new value for k, (viz. k;) such That 1 < k3/ai.

-




transition takes place. Below n, the error equation is described by an
equation similar to that of Eq. (g. 9). The equation is

n(1) = n, exp[(a.l -k3)(-r-'r3)] for 7> s (5.19)

Once again Eq. (5.16) can be used to write an equation which describes the
correction beyond 7

3°
a2y
n (1) = a—l—:E; {ex?[(al-k:,’)(r- 73)] -1} + nc(-r3) (5. 20)

where

k.n
3 2"
n (73) =k 7y + ki (r;-7,) + 3K lexp[ (@) -k, )7,-7))] - 1}

which is obtained by substituting 7, for 7 in Eq, (5.18). The three cases
are illustrated in Figs, 5,2, 5.3 a;nd 5. 4. An initial error quantity of
n_ = 100 has been assumed in all cases.

A PL/I computer program (see Appendix II for a listing and flowchart)
has been written which plots the number of remaining errors, the cumula-
tive corrected errors and the total number of errors. The calculated points
for the curves in Figs, 5.2, 5.3 and 5, 4 were computed using this program,

5. 4 Summary

Many of the features of these models agree with the data reported in the
literature and the experiences of program managers, Since basic data on
manpower deployment, error rate, the rate of error generation, etc,, are
largely unavailable, testing the validity of the above models must
await further experimental result. Assuming the above models are valid,
we can investigate the economic constraints imposed upon Case 1. An eco-
nomic break-even between rewriting the program and extensive debugging
is discussed in the next chapter,

38




(a) Unstable Model. Errors build~up
indiscriminately.

(¢) Oscillatory Model.

Fig. 5.1 Remaining errors plotted as a function of months of
debugging.

39




r. oy - - , e,

240t

| 220
| 200}
180}
160
140
2o}

100

Number of Errors

80

60

40

Slope = 10 Bugs/Man-month

20

Il Il —} [ Il A I 2

Debugging effort in mon—months

Fig. 5.2 Case 1 Unstable Model Controlled Subsequently.
(See Eqs. 5.7, 5.9, 5.10, 5.11, 5. 12, 5. 13, 5. 15)

40

B ——
:

o e s . ) . oot s

0 2 4 6 8 10 12 14 16 118 20 22 24 26




Number of Errors

1Of

100

90

20

| OF

Totat_Emo=

Slope =10 Bugs/Man—month

1 1

)
2 4 6 8 10 12 4 16

Debugging effort in man—months
Fig. 5.3 Case 2 The Controlled Model.
(See Eqs. 5.7, 5.9, 5.10, 5. 16)

41




128
120

Hno
100
20

80

50

Number of Errors

30t

20

(o] 4

70t

SOT

aof

L.

e

“ogs
0\ -
lope = |0 Bugs/Maon—months
lope #10 Bugs/Man-month
7%
@ P
& 3
; %
£
)

A A 94

2 4 6 8 110 12 ¥ 13 1B 20 22 24 26
Debugging effort In mon-monihs

Fig. 5.4 Case 3 The Oscillatory Model Oscillations Controlled after
the First Bump. (See Eqs. 5.7, 5.9, 5.10, 5,16, 5.17,
$.18, 5. 19,.5.20)

42




CHAPTER 6

DEBUGGING COST MODELS
6.1 Introduction

The problem of computing an economic break-even point looks easy at
first glance. However, it involves modeling of the penalty which the custo-
mer will demand for any delay caused in getting the system working* Based
on the models previously developed there is no closed form expression
which can be devised to calculate compensation because there is no closed
form expression for the length of the penalty period. This is clear if we
examine the equation describing the error buildup (c.f. Eq. 5.7 with
n_> k,/a,). Since this equation is not linear, we have to compute the
pgnalty period for every value of n(7). However, one can perform a para-
metric study and produce tables and/or graphs for the penalty period,

6.2 Programming Economics Without Penalty

In Chapter 2, we stated that no program can be absolutely free of er-
rors, In other words, bugs cannot be eliminated completely, Therefore,
the economic model includes the effects caused by a trace of residual er-
rors in the program, Although in most of the debugging experiments the
errors do not build up initially (as depicted in Case {, Chapter 5) we con-
sider it to be true here and base our economic model on this extreme case.
However, the model could be extended to cases where the buildup may oc-
cur sometime during the course of debugging, We assume that the errors
build up from n_ (initial error content) to n', After a transition at this
point (which is the result of introduction of super-debuggers), the errors
fall to ny where the next transition takes place (c.f. Eq. 5.9). The errors
subsequently fall to a final value n, which is the residual number of errors
in the program. The final value, n,, which is achieved must result in a
satisfactory level of operational reﬁabﬂity. With a knowledge of n', n, and
n, one can solve Eqs, (5,9) and (5. 12) and calculate the time required %o
achieve the level of satisfaction desired.

We are not interested in computing the expenses prior to time 7' (the
instant of time at which n(7) has built up to n') because our task is to com-
pare the cost of rewriting the program with that of further debugging, The
amount of money expended till 7' has no influence on the alternatives that
will be resorted to, Evaluation of the time expended in debugging beyond
7' is carried out by solving Eq. (5.12) for 7. Since 7' has no signifi-
cance except for evaluating the penalty which is explained later, we may
move the coordinate axes to 7'. For an error content of n we get

kl/l

- a

re Lo o fe—tet (6.1)
a, '-ki/ai

*A contract with a penalty clause for late delivery explicitly states the
delay penalty in dollars,

43




Wﬂv B v ——— v ‘ e e

The time 7,, for the errors to decrease from n' to n is known from
Eq. (6.1) by fixing n = n. Therefore

] 1
1 ny -ky/a,

Pgim g m| ————v—7 (6. 2)
a, n -ki/a.1

After a transition at 7 = Ty the error mode! is described by Eq. (5.9).
Solving Eq. (5.9) for 7 we get

T = Tf +-i1_.—- In (i) (6.3) ;
n 3
(a1 'kz) 1 E

By fixing n = n, (the residual number of bugs in the program) and substitut-

ing for Ty from Eq. (6.2), Eq. (6.3) may be rewritten as
1 |}
n, -k, /a n
A B o i +_,1_m<_2) (6. 4)
n
a, n - ki/ai (a.i-kz) 1

where T, is the time in man-months spent in reducing the number of errors
from d ~ to n,.

For simplicity we will first formulate a model which does not involve
any penalty for delay, Subsequently we will include penalty terms for delay
and arrive at a thorough analysis,

Let us say that the debugging cost per man-month is Cor Thus the de-
bugging expense, c4, incurred in going from n' to n, is

cq=¢,7, (6. 5)

If ¢ represents the cost of rewriting, debugging, and testing the program
then the break-even occurs when cy; £ ¢, Substituting for > from Eq.
(6, 4) into Eq. (6. 5) we get for brea(.]k-even

1 & k'i/a'i { i
€ e ChE N —pme—m— e (6. 6)
a, n - ki/.'«.\.1 al-k2 1

Solving Eq, (6. 6) for n' we get

44




A NS T i e

I T A RS I O RSO it LA O -

1 n
n':n1 exp 31 ll fn _E 2-:60
-k ni (o}
3.1 2 o

1
k t n
t {t-exp|a {1— n—‘z)ci] (6.7)
a.1 a1-1<2 o

Usmg Eq. (6.7) a curve can be plotted with n' as a function of c/c_. Since
c is the total cost of rewriting and o is the debugging cost per man-month
the ratio ¢/c_ is in man- months. Such a curve is portrayed in Fig, 6.1.
This curve has an asymptote n' = k /a. It is interesting to make note of
the outcome if n' > k| /a., Under such a condition we only repeat the ear-

lier situation where n >lk’/a.1. The values assigned to k, and a, by the

super-debuggers are unsatisfactory, resulting in a further buildup of errors.

6.3 Economics with Penalty

To understand the economics involving penalty we can construct a
hypothetical example. We shall consider a program of 10, 000 machine
language words having an initial error content equal to 1% of the total
lines of code as observed by Shooman and Bolsky [6] in their experi-
ment, Let us begin by assuming the following values for the parame-
ters in the foregoing equations.

n = 100 (1% of the total number of words), k1 =10, a, = 0. 125

1 ] 1 1
k= 12,5, a =20, ny=1, k,/aj= 357

T 0. 035, k2= 0.15, n

1 )

ki/at = 80

Reference [10] contains an analysis of the development costs of the Apollo
Spacecraft guidance and control computer software., Complete statistics
on the cost of software development were discussed in the report, The de-
velopment cost per machine word ranges from $60 on the lower limit to
$200 on the upper limit depending upon the complexity of the module, The
development cost includes the cost of writing, debugging and testing, De-
bugging expense was rated at $3000 per man-month,

We make a few more assumptions which are listed below,

45




AT S i, o s s e

*Number of men employed in Region 1
(i.e., n> ni) = 8

*Number of men employed in Region 2

Profit
Penalty per month of delay

20% of development cost
1% of contract price

(i.e., n< nl) = 4

Contract period = 18 Months
Writing period = 9 Months
Debugging and Testing = 7. 5 Months
Grace Period = 1. 5 Months
Debugging expense = $3000/ Man-Month
Development cost = $ 50/ Word

The development cost works out to be $500, 000, With 20% profit the con-
tract price is $600, 000. Penalty is fixed at $6000 for every month of delay,

In order to evaluate penalty it is essential to know the amount of time
expended from the commencement of debugging. Using Eq., (5.7) we can
write the effort (man-months) wasted in building the errors up to n' as

L 1
T —;—ln

1 n, - ki/a.1

]
n -k,/a
RIS S5 (6. 8)

Since the number of men employed are 8 and 4 in Regions {1 and 2, respec-
tively, the amount of time (months) spent from the start of debugging is
; ok
T +T T =T
= 1 2
T= - S (6. 9)

Let us consider an extreme case where n' = 350,

Using Eq. (6.8) we get 7' = 20. 82 man-months

From Eq. (6.2) we find o 110, 70 man-months
and from Eq, (6. 4) T, = 13 6. 70 man-months

Using Eq, (6.9) T = 22.94 months

Since we have assumed a writing time of 9 months the total period =
22.94 + 9 = 31, 94 months,

* For further details on Regions see Chapter 5.

*%7, is the number of man-months expended in reduc ing the errors from n'
to n,. Hence U is a subset of 5

46




S R

Penalty period = Total period - Contract period

31.94 - 18 = 13. 94 months
Extensive debugging cost = $3000/man-month x 136, 70 man-months
= $410, 100 [using Eq. (6.5)]
Penalty in Dollars = $6000 x 13. 94 = $83, 640
Further debugging therefore costs $410, 100 + $83, 640 = $493, 740.
On the other hand, upon finding n' = 350 if the decision had been to re-

write then the total time spent from the beginning of the contract would be
' first writing period + 7' /8 + redevelopment period,

In order to reduce the penalty the software manager expedites the pro-

cess by a month and a half thus resulting in a development time of 15 months.

Therefore

Total period 9 + 2. 60% + 15 = 26, 60 months

26, 60 - 18 = 8, 60 months

Penalty period

Penalty in dollars 8. 60 x $6000 = $51, 600

Redevelopment cost + penalty = $500, 000 + $51, 600 = $551, 600

64 Supewry

In the foregoing example it is seen that extensive debugging works out
to be more economical compared to rewriting although the errors have
built up indiscriminately. In practice such a buildup is unthinkable., How-
ever, we cannot generalize that debugging is more economical because a
decision depends upon the magnitude of the various parameters such as de-
velopment cost, penalty charges, etc. The equations discussed are, how-
ever, applicable to all programs,

¥V /8 = 2, 60,

47

P N————




n/ng i
Asymptote = —L
3.7 F3.57 % aQno
34r Rewriting :
Region
3.1
: Debugging
28k Region
25
22
19 |-
1.6
L3F
l. 1 1 1 ! ] ] il J
030 50 70 90 100 130 150 170 190 210
c
Number of man-month ¢,~
ci= Rewriting cost/Debugging Cost per man-month.
Fig., 6.1 Demarcation between debugging and rewriting regions*

(see Eq. (6.7))




AL e AL 1 Lo

CHAPTER 7

CONCLUSION

7.1 Summary

The development of an error model which accounted for error growth
progressed through several stages, and culminated in the complex model
developed in Chapter 5. At this point we are unable to justify the validity
of those models because relevant experimental data is unavailable. How~
ever, basic assumptions and overall form of the results seem realistic,
The model development led to the analysis of three cases, Assignment of
insufficiently experienced debuggers results in a situation as depicted in
Case {1 while a contrast to this is observed (Case 2) if superior debuggers
are assigned to the same job. Very often programmers work on more than
one project at a time and once the errors in one project are well under con-
trol the superior debuggers are assigned a new task which may subsequently
result in an error buildup, and this is explained by Case 3.

7.2 Suggestions for Further Work

Having evolved reasonable error models, the next step is to evaluate
the various parameters of the models, and test the validity of the model as
a prediction test, In order to reduce the mathematical complexity, the
change of manpower in all the model!s has been assumed to be abrupt. In
practice the change is gradual.

Moreover the growth-decay parameters (a's and k's) are complex
functions of the debugging time 7, manpower variation and rate of change
of errors in the program, In order to formulate these functions it is neces-
sary to study the changing manpower and the rate of error removal at every
instant of debugging time in many projects, Another method of developing
these functions is to measure the above parameters of individual program-
mers, Once these are available for every programmer, the parameters
for the team could be established by including a mutual interaction coeffi-
cient (a factor due to coordination problems between programmers), Once
these functions for the team are available, the error equations discussed
in Chapter 5 could be applied to obtain a practical estimate of debugging ef-
fort required for any project.

49




APPENDIX I

A summary of the basic models and assumptions of Chapters 4 and 5
appear in Table A-1 below.

TABLE A-{ (Summary of Error Models)

BASIS EQUATION Eq. (4.3)

-d—:;_(r—‘r)-= rg('r) - rc('r)

n(t=0)= n,

CASE EQUATION SOLUTION ]

1. Generation and
Correction
Proportional to
Detection
l'g('r) = af rd(’T) (1) = B(a-l)rd('r) If o <1
n(r) is a decreasing
function 3
r (1) = Br(r) Ko>1 |
n(r) is an increasing
function
2. No generation
rg('f) =0 n(7)= -B 1‘0 n(r )= nO-(B ro)‘l’ {

r (7)= Br4lr)

Correction ~ Detection
Detection = Constant

3. No generation
r (t)=0 n(r) = -BK, n(7) n(7) = n e
g 1
rC(T) e B rd('r)
rd('r) = K1 n(7)
[Correction ~ Detection ]
t

Detection ~ Error Presen A

50




CASE

4, Generation
Proportional to
Product of Errors
Present and
Detection

rg('r) = a rd('r) n(t)
rc('r) =b rd(-r)

Correction
Proportional to
Detection

5. Generation
Proportional to
Number of Er-
rors Present
and Correction
is either Man-
power or Detec-
tion limited,

rg('r) =a, n(7)

k‘ for

n(7)> n,
rc(-r)=

kzn(-r) for

n(1) < n,

EQUATION

n(r) =[a.n('r)-b]rd('r)

For rd('r)= const, = TS

n(r)= [an('r)-b]ro

n(r)= -k, +a n(7)
for n(7) > n,
1.1(7)= -kzn('r)
+ aln('r)

for n(7) < n,

51

SOLUTION

r.T
+b/a

If n_ < b/a then n(7) is
an fhverted exponential

a
n(7)= (no-b/a)e

n
o

N T
If n_> b/a then n(7) is
a growing exponential

n
o

n(t) > n,
a,T

n(r)=(n -k, /a, Je 1 +k /a

(same form as Case 4)

n(7) < n,

n('rknt expl(a rkz)('r- /) )N

1) If 1 < kZ/ai’ then

n(7) decays exponen-
tially as shown in
Fig. 5.1b

(ii) If 1 >k,/a,, then
n(r) oséulltea as
shown in Fig, 5, ic.

T rr

e

Gt okt e i e b

e 3 S g SN e




APPENDIX II |
START |

|
& |
GET n,n_ &n ARE (0:500) ARRAYS
ny o, n,n, DGRAPHT=INTERVAL BETWEEN
et PLOTTED POINTS,
gr 1%y Kyo K DEFAULT=1
kg CASE, DT, DT=REGULATES THE TIME INTERVAL
IN WHICH THE EQUATIONS ARE :
RERARDT. TTN EVALUATED, THE SMALLER THE 11

DT THE MORE PRONOUNCED THE ‘
TRANSITIONS WILL BE,FOR BEST |
RESULTS |
DT= DGRAPHT/10 ‘ j
B FIN=THE NUMBER OF POINTS TO BE
PLOTTED.
DEFAULT=50
CASE=EITHER {1 OR 2 OR 3 DEPENDING
UPON THE PARAMETERS

ACCFPTS
n r:. n, nz:
apag, kl' ki' kz,
DT, DGRAPHT,

FIN AND COM-
PUTES n, n_ &nt

A
e THE PROGRAM STOPS ON L
CASE AGE 5 THE ENDFILE CONDITION :
ACCEPTS
n,n,n,a
o 42
NO
kl' k2' DT,
DGRAPHT,
FIN AND COM- .
PUTES n, n_&n Fig. A2.1 The System Flowchart
C t 4
Note: ‘ E
CASE 3 [PAGE 57 The page rumbers adjacent to each 1
box indicate the location of the flow- 3
ACCEPTS oy chart portraying the case in detail.
n,, n3, ag kl' k2’
k3. DT, DGRAPHT,
FIN AND COM-
PUTES n,n_&n
c t
E
PRINTGRAPH @
T PLOTS n, n_ & n,
AS A FUNCTION
OF DEBUGGING
TIME 71

@

52




0 <0

I

0/ <0

n"> Ki/a1

PUT
ILLEGAL DATA
VALUES

n(L) = (ng-k,/a,)expla,T) +k,/q,

nelt) = kit
T=T+AT n'(.) - ncu)+nu)
= Q0+l
YES @i<n
NO THE NO BRANCH IS
| TRAVERSED WHEN THE
FIRST TRANSITION
- 0 OCCURS AT
n(l) = n'

Fig., A2, 2 Part1{ of the flowchart for CASE |

53

e e e e ——




n(Q) = (n~ki/d) exp[di(r-7)]+K/a,
ne(Q) = kK (r-1)

T = TH+AT n{2) = n(2)+ nc()
Q= Q+|
T— n(Q)>n
YES THE NO BRANCH IS

NO | TRAVERSED WHEN THE
SECOND TRANSITION
OCCURS AT n,

T'-r

ﬂ(m.= m

41

n@ = mn exp[(o.-ka)(r-n)]
nel = kir'+Kilmi-¥)+ ke /(0i-ko){expf(ci-ke) (r- T} 1}
n(Q = n(Q)+nc(Q

RETURN
TAND T

Fig. A2.3 Part 2 of the flowchart for CASE 1{

54

DTN i . ol e s M




b b g i 2

( case=2 )

L |
nn
o0

T= T+AT

g= 4!

YES l
PUT
ILLEGAL DATA
VALUES

ne(0) = Kkt
ni(Q) = nc(ro)+n(0)

n(t) = (no-ki/a;) exp(o) T)+ ki /a

n(L)>n
YES

THE NO BRANCH IS
TRAVERSED WHEN
A TRANSITION
OCCURS AT n,

Fig, A2, 4 Part{ of the flowchart for CASE 2

55




}_
| y
n@Q) = n, exp[ (o k,N7—7)]

nC(Q) = k|T| +kzn|/hl'k2){em[(0|' kz-)(T-'q)] -l}
nt(L) = ne()+n(R) 3

T = T+AT 1
0= 0l f
L n(8)>1 ’
YES
NO
(: RETURN
7

®

Fig. A2.5 Part 2 of the flowchart for CASE 2

56




no2 ki/a

| <kz/0, YES .
Yk PUT ILLEGAL
RE= W DATA VALUES
__/—_‘
T=0 !
91=0

n(k) = (no—ki/ai)explait)+ki/a

ne(d) = kit
n(®) = ne(2)+n(0)

T = T+AT
0= g+ [@ n(t) >m
‘ WHEN
THE FIRST TRANSITION
T=T OCCURS AT n,
n(@) = ni

Fig. A2,6 Part{ of the flowchart for CASE 3

57




T .

§

nt) = ni expllai-ke)ir-)]

ne@) = k T+ kamy 7(0,—k2) exp[(o.- kz)(r._r.)]— I}
¥ % Al nt(Q) = ne)+n(0)

2= 0+
[ n(@)<n2
YES
NO THE NO IS TRAVERSED
'WHEN THE SECOND
TRANSITION OCCURS

s AT n,
n{2)= n2

=
n(@) = (nz-k,/q)) exp[ol(r-—rz_)]+k./o.
nd) = kiy+ken;/(0;~k2) | exp (or-k;)(zz—r.)]- I}

+ ki(t -13)
ne(Q) = n(!)+n¢(0)

T=T+AT
0= Q0+t
Tf n(l)> n3
YES \o |THE NO BRANCH IS
| TRAVERSED WHEN
THE THIRD TRANSITION
OCCURS AT nyg

Fig. A2.7 Part 2 of the flowchart for CASE 3




N S B

P T S AR A

{
£
:
#
%
:
2
:
i

1

T3 = Ts

ﬂ(Q) = n3

41

n(o) = n3 eXP [(Ol-kB)(r— TB)]
ne(@) = kans/fa-ky{exp[(ai-k3)(T- w)]-1} + K,

+ ki (r3—75 ) + k2ni/fa- ke ){exp[(o.- ke)(z- T )] = I}

T=T+AT
L= 0+
[ n(Q)>1
YES
NO

C RETURN )
T| 9 Tz ,f3

Fig. A2.8 Part 3 of the flowchart for CASE 3

59

T




@____...

YES

CASE THE INPUT PARAMETERS
| ARE: NO, NP, Ni, Af, A1P,
K1, K1 P, K2, DT, DGRAPH T,

| FIN

NO<K1 /A1

A1P<0 YES

NP>K1P/AtP

PUT
ILLEGAL
DATA VALUES

RETURN

COUNT=0
N_TAB=0

NC_TAB=0 START OF THE DO LOOP
NT_TAB=0 (LABELED LOOP) WHICH

LOOP—F: | COMPUTES N, NC & NT

| T=DT ]

YES

y

N=(N0-K1/A1)*EXP(A1*T)+K1 /Al
NC=K{ *T

STAGE=

f

Y_

TPRIME))+K1{ F/A1 P

N=(NP-Ki{P/A1 P)* EXP(A1P*(T- \

NC=K1{ *TPRIME+K{ P*(T-TPRIME)

NO

STAGE=2

N=N{ *EXP((A1P-K2)* (T-Tt1))
NC=K{ *TPRIME +K1{ P*(T{ -TPRIME)

+(K2%N1)/(K2-A1 P)*(1 -EXP(
(A1 P-K2)*(T-T1))) Fig. A2.9 Part{ of

I the flowchart for

compatible with the
computer program

CASE { which is
NT=N +NC

60

e




v

THE SECOND
TRANSITION

(N-N1)*(LASTN-N1)<0

HAS
OCCURRED
AT Ni

e

YES

YES

¥

COUNT= COUNT+{
N_TAB(COUNT)EN
NC_TAB(COUNT)=NC
NT_TAB(COUNT)=NT
PLOT_TIME=PLOT_TIME+
DGRAPHT

STAGE=1

(N-NP)*(LASTN-NP)<0D

THE FIRST
TRANSITION
| HAS
OCCURRED

TPRIME=T
STAGE=1

AT N=NP

STAGE=2
[ Ti=T

L

NO

GO TO 6

o

PLOTS N, NC&NT

AS A FUNCTION OF T

RETURN
TPRIME, T

61

THIS COMPLETES
THE DO LOCP

Fig. A2.10 Part 2 of the flowchart

for CASE { which is compatible
with the computer program

e




TABLE A-2

CORRESPONDENCE BETWEEN ACTUAL PARAMETERS
AND PROGRAM PARAMETERS

The flowcharts of Figs. A2.1 to A2.8 summarize the text in this report

(i. e. the parameters are the same as in the text). The program is written

in the upper case alphabet since the lower case alphabet is evidently not

available. The correspondence between the actual parameters and those in

the computer program is as follows:

ACTUAL PARAMETERS PROGRAM PARAMETERS
ng NO |
n' NP ]
n, N1 g
n, N2
ng N3
n NC
C

n, NT
a, Al
a'l AlP
kl K1
k'1 K1P
k2 K2
k3 K3
o TPRIME
3 i
T, T2
Tg T3

A flowchart compatible with the program will require a much greater
level of detail. Figs. A2,9 and A2, 10 present such a flowchart for case 1.
The flowcharts for the remaining cases are analogous and are not included.




r' e e e e s
ey . o sl

(STRINGRANGE ¢ SUBSCRIPTRANGE ) ¢
MODELS: PROCEDURE OPTIONS (MAIN);
/% EXPLANATIONS OF DATA VARIABLES

INPUT VARIABLES

CASE1 THE CORRESPONDENCE BETWEEN
NOyNPyNLyALlsALP K1, THESE VARIABLES AND THOSE
K1PyK2:DT4DGRAPHT,FIN IN THE TEXT (WHICH ARE

WRITTEN IN LOWER CASE)

FOR ALL CASES IS SHOWN IN
CASE2 TABLE A-2 ON PAGE 62.
NOyN1sAL(KL,yK2

CASE3
N0’N11N29N3'A1'K1'K2'K3

DGRAPHT INTERVAL BETWEEN PLOTTED
POINTSe DEFAULT = 1

DT REGULATES THE TIME INTERVAL
IN WHICH THE EQUATIONS ARE
EVALUATED, THE SMALLER THE
VALUE OF DT THE CLOSER THE
TRANSITIONS WILL BE, FOR
BEST RESULTS DT=DGRAPHT/10.

FIN THE NUMBER OF POINTS TO BE

PLOTTEDe DEFAULT = 50.
sxkekihhtr EXAMPLES OF DATA CARDS *%kkkkkhkkkk sk akhkrs ik
CASE=2, NO=100, K1=10, K2=e2, N1=25, Al=.0665 3

CASE=3, NO=10., K1=10, Al1=.026y N1=30y K2=40ls N2=40,
N3=20, K3=,15 ;

Aok ko Rk kR kg ko ok ok ok ok R ok ok koo Rk ok kok kkkok gk ko okkkkkk %/

63

pREmoERE ¢




DECLARE (NO, NP, N1, Al, AlP, Kl, K1P, K2, K3, N2, N3)

FLOAT INITIAL (0O),

(N_TAB, NC_TAB, NT_TAB ) (0:500) FLOAT( 16 ),
(Ty TPRIME, Tly T2, T3y, Ny NCy NT) FLOAT (16)
INITIAL (0EO);

DECLARE ( COUNT, LASTN, DGRAPHT, DT , FIN, PLOT_TIME)

FLOAT, 1 FIXED BIN (31),
STAGE FIXED BINARY (31) INITIAL (1);

/% PLOT_TIME IS THE INSTANT OF TIME AT WHICH THE FUNCTION

IS PLOTTED, WHEREAS T IS THE INSTANT OF TIME AT WHICH
THE EQUATIONS ARE COMPUTEDe THE TIME INTERVAL IN WHICH
THE EQUATIONS ARE COMPUTED IS MUCH SMALLER THAN THE
INTERVAL BETWEEN THE PLOTTED POINTS ( TEN POINTS ARE
COMPUTEDy AND ONLY CNE PLOTTED)e T<K< PLOT_TIME IS
DESIRED BECAUSE A CONTINUOUS CHANGE OF THE VARIABLES

Ns NC AND NT IS AVAILABLE (IN THE ASSUMED INPUT DATA).
A SMALL T IS EQUIVALENT TO A DAY-TD-DAY PROUGRESS IN A
REAL=-LIFE SITUATION, WHILE A LARGE PLOT_TIME IS EQUIVALENT
TO A CO-ORDINATE IN A PERFORMANCE CHART OVER A LONG
PERIODy SAY ONE YEARe THE RECORDING OF THE RESULTS,
HOWEVER, MAY TAKE PLACE EVERY 15 DAYS. */

64

B G0 bt s 55




ON ENDFILE (SYSIN) BEGIN; <
PUT PAGE EDIT (*END OF DATA ENCOUNTEREDe 'y, * IF ANY ]|
*DATA SETS SEEM TO HAVE BEEN SKIPPED, CHECK TO SEE IF YOU'
Il * PUT IN THE SEMICOLON®, * *%xx%xTERMINATING RUN ***%
') (COL(Ll),A)S

STOP;

END3

ON NAME (SYSIN) BEGIN;

PUT PAGE EDIT (' ERROR #*%%%%x ONE OF THE INPUT DATA ITEMS ¢
Il *IS NOT AS EXPECTEDe THE ONLY LEGAL DATA ITEMS ARE 3¢,
* NOy, NPy N1, N2, N3, Al, AlP, K1, K1P, K2, K3, DT, FIN, °
| | "OGRAPHT ¢,

* THE LAST THREE BEING OPTIONAL®, °*PROBABLE CAUSE 1S* ||

* KEYPUNCH ERROR IN PUNCHING THE DATA', ' THE PART WHICH
|| *CAUSED THE TROUBLE IS:'| IDATAFIELD,

¢ sxx%% TERMINATING RUN **%%%%) ( A,SKIP);

STOP;

END;

ON ERROR SNAP BEGINS

ON ERROR SYSTEM;

PUT SKIP (4) LIST (* AN INTERNAL PROGRAM ERROR HAS *|
'OCCURED, PLEASE SHOW THIS PRINTOUT TO S. NATARAJAN?)
PUT SKIP LIST (°ONCODE=*y ONCODE);

PUT SKIP (4) DATA;

STOP;

END3

/* INITIALIZATIONS x/

T=05 FIN=50 3§ OT=1E-1; DGRAPHT=13

DO WHILE (°'1'B);

GET OATA (NOyNPNLyN2yN3s Al+ALPK14KLPyK24K3,DT ¢DGRAPHT,
CASE,FIN);

STAGE=03

/* STAGE=0 INDICATES WE ARE BEFORE THE FIRST TRANSITION
STAGE=1 INDICATES AFTER FIRST TRANSITION

STAGE=2 INDICATES AFTER SECOND TRANSITION */
PLOT_TIME=DGRAPHT 3}

N_TAB(OD)=NO;

NC_TAB(O0)=0 ;

NT_TAB(O)=N_TAB(O);

LASTN=N_TAB(O):

/* LASTN IS THE PREVIOUS VALUE OF N x/
IF CASE=1 THEN CALL CASEl ;
ELSE IF CASE=2 THEN CALL CASE2;
ELSE CALL CASE3;:
END;

65

il s s i

Sl dd




CASEl: PROC:

CGUNT=0EOQ;

N_TAB=0EQ; NC_TAB=0EO; NT_TAB=0E0;

PUT PAGE EDIT ('CASE 1')(COL(44),A);

PUT SKIP (3)3

PUT EDIT (°NO ='yNO,*NP =',NP,*N]1 =*,N1)
(COL(L14)yA,COLIL9),F(3),COLI38),A,COLI43)sF(3),
COL(63) yA,COL(68),F(2))
(YAl =", Al,"AlP =',A1P, 'Kl =*,K1)
(COL(14) sAsCOLIL9)yF(593),COLI38)A,COL(44),F(6,4),
COL(63),A,COL(68),F(2))
(*KLP =9 ,K1P,*K2 =9,K2,'DT =9,DT)
(COL(14)sA,COL(20)yF(4,y1),COL(38)4A,COL(43),F(5,3),
COLU63)4A,COLI6B) F(5,3))
(*OGRAPHT =' ,DGRAPHT,'FIN =',FIN)
(COL(L4)sA,COLEI24),F (1) 4COLL38)oA,COL(%4) F(2));

PUT SKIP (6);

IF (A1<=0) | (NO<=KLl/Al) | (A1P=0) | (NP>=KLP/AlP)

THEN GO TO ERROR

GO TO RESUME;

ERSJR: PUT SKIP LIST (*ILLEGAL DATA VALUES, SKIPPING SET');

RETURN;

RESUME:
LOOP: DO T= DT TO FIN BY DT
/* COMPUTE THE EQUATIONS */
[F STAGE =0 THEN DO;
N=(NO=-K1/Al)* EXP(AL%*T)+ K1/Al 3
NC= K1*T3s
END;
FLSE IF STAGE=1 THEN DO3
N=(NP-KL1P/ALP) * EXP(ALP*(T~TPRIME)) ¢+ K1lP/ALlP;
NC=K1*TPRIME + K1P*(T-TPRIME);
END;
ELSE D33
N=N1*EXP((ALP-K2)*(T-T1)) 3
NC=K1*TPRIME + K1P*{(T1-TPRIME) + (K2%*Nl1)/(K2-AlP)x*
(1-EXP((ALP=-K2)*({T-T1 ))) 3
END3




/% IN ANY EVENT ¥/ NT=N & NC3
IF TO>PLOT_TIME THEN DO; /% IT*'S TIME TO RECORD ANOTHER
SET OF POINTS FOR LATER
GRAPHING */
COUNT=COUNT + 13
N_TAB(COUNT) = N3
NC_TAB(COUNT) = NC3
NT_TAB(COUNT) = NT3
PLOT_TIME = PLOT_TIME + DGRAPHT;
END;
IF STAGE = O THEN IF (N-NP)*(LASTN-NP)<=0EQ THEN DO3
/* THE ERRORS HAVE INCREASED TGO N* WHICH CORRESPONDS TO
THE FIRST TRANSITION IN THE ERROR EQUATION . */
TPRIME=T;
STAGE = 13
END3
ELSES
ELSE IF STAGE = 1 THEN IF (N-N1) *(LASTN-N1)<=0EOQ0 THEN D03
/* THE ERRORS HAVE DECREASED TO N1 WHICH CORRESPONDS TO
THE SECOND TRANSITICN IN THE ERROR EQUATION. */
STAGE = 23
T1=T;
END3
LASTN=N;
END LOOP;
CALL PRINTGRAPH;
PUT SKIP DATA ( TPRIME, T1l):
END CASELS

67




{
i
é

[ it S e - X -

aanidiion

CASE2:PROC;

COUNT=0;

N_TAB=0EO; NC_TAB=0EO; NT_TAB=0EO;

PUT PAGE EDIT (°CASE 2°*)(COL(44),A);

PUT SKIP(3);

PUT EDIT (*NO =*,NOy*N1l ="¢N1ly'Al =',A1)
(COL(14)+A,COL(19),4F(3),COL(38)9A,COL(43),F(2),
COL(63)4AoCOL(68)+F(694))

(*K1l =*,K1,'K2 ='yK2,°0T =*,DT)

(COL(14),A,COLI19),F(2),C0L(38),A,COL(43),F(5,3),

COL(63),A,COL168),F(5+3))

(*FIN =°,FIN, *DGRAPHT =',DGRAPHT)

(COL(14),A,COL(20),F(2),COL(38)yA,COL(48)4F(1))3
PUT SKIP (6)3

LOOP: DO T= OT TO FIN BY DT;
/* COMPUTE THE EQUATIONS =/
i1F STAGE = 0 THEN DO;
N=(NO-K1/AL)*EXP(ALl*T) + K1/Al;
NC = K1=*T;
END3
ELSE DO;
N=N1%*EXP((A1-K2)*(T-T1));
NC=K1*T]l ¢ (K2*Nl)/(K2-A1)*(1EO0 - EXP((Al-K2)*(T - T1)));
END;
NT=N ¢ NC;
IF TO>PLOT_TIME THEN DO; /% 1T¢S TIME TO RECORD ANOTHER
SET OF POINTS FOR LATER
GRAPHING */
COUNT=COUNT+1;
N_TAB(COUNT) =N;
NC_TAB(COUNT )=NC;
NT_TAB(COUNT ) =NT3
PLOT_TIME=PLOT_TIME+DGRAPHT;
END;
IF STAGE=0 THEN IF (N-N1)*(LASTN-NL1)<=0EO0 THEN DO;
/* THE ERRORS HAVE DECREASED TO N1 WHICH CORRESPUNDS TO
THE FIRST TRANSITION IN THE ERROR EQUATION. */
Tl=T; ;
STAGE=13
END3
LASTN=N;
END LOOP;
CALL PRINTGRAPH;
PUT SKIP DATA(TL1);
END CASE2;

68




i

CASE3:PROCS

DECLARE ( NCT2, /* =NC(T2) =/

NCT3 /¥=NC(T3) */) FLOAT INIT(OEO);

COUNT=03

N_TAB=0EO; NC_TAB=0EQ: NT_TAB=0EO; .

PUT PAGE EDIT (°CASE 3°*)(COL(44),A);

PUT SKIP (3):

PUT EDIT (*°NO =, NOs*NLl =*',N1,'N2 =*,N2)
(COL(14),A,COLIL9),F(3),COL(38),A,COL(43),F(2),
COLI63),A,COLI68),F(2))

('N3 ='4N3,%°A) =',A1,'K]1 =',K1)

(COL(L4) )A+COLIL9)F(2),COLL3B)ACOL(43)4F(694),
COL(63),A,COL(68),F(2))

(K2 ="9K29'K3 =?4yK3,'DT =2,DT)
(COL(L4)sA,COL(19)yF(694)+COL(38),A,COLI43)4F(5+3),
COL(63)A,COL(68)F(5,31))

('FIN ='oFIN, 'DGRAPHT =*,DGRAPHT)

(COLL14) sA,COL(20),F(2),COL(38),A,COL(4B)yF(L));

PUT SKIP (6)3

LOOP: DO T= DT TO FIN BY DT;

/% COMPUTE THE EQUATIONS */

IF STAGE =0 THEN DO;

N=(NO-K1/AL)* EXP(AL*T) + K1/Al;
NC=K1%T;
END3
ELSE IF STAGE = 1 THEN DO;
N=NL*EXP ((AL-KZ)*( T-T1));
NC= (K2%N1)/(ALl-K2 )% (EXP((AL1-K2)*(T-T1))-1EQ)+K1*T1;
END;

ELSE IF STAGE=2 THEN DO;
N=(N2~KL/AL)*EXPIAL*(T=T2) ) ¢KL/AL;
NC=NCT2+KL*(T=T2);

END3

69

Ao R M 70 G U AT RS W 4 N s i o~




ELSE IF STAGE=3 THEN DO;
N=N3*EXP((AL-K3)*(T-T3))3
NC=(K3%N3)/(K3-Al)*(1-EXP((AL1-K3)*(T-T3)))+NCT3;
END3
NT=NC+N;3
IF TOPLOT_TIME THEN DO; /* 1T'S TIME TO RECORD ANOTHER
SET OF POINTS FOR LATER
GRAPHING */
COUNT=COUNT+13
N_TAB(COUNT) =N;
NC_TAB(COUNT ) =NC;
NT_TAB(COUNT)=NT3;
PLOT_TIME=PLOT_TIME+DGRAPHT;
END3
IF STAGE=0 THEN IF (N-N1)*(LASTN-N1)<=0EO THEN DO;
/* THE ERRORS HAVE DECREASED TO N1 WHICH CORRESPONDS TO
THE FIRST TRANSITION IN THE ERROR EQUATION. */
T1=T;
STAGE=13
END;
ELSE;
ELSE IF STAGE=1 THEN IF (N-N2)*(LASTN-N2)<=0EO0 THEN DO;
/* THE ERRORS HAVE UNFORTUNATELY INCREASED TO N2 WHICH
CORRESPONDS TO THE SECOND TRANSITION IN THE ERROR
FQUATION. */
T2=T3
NCT2=NC;
STAGE=23
END3
ELSE;
ELSE IF STAGE=2 THEN IF (N-N3)*(LASTN-N3)<=0EO THEN DO3
/* THE ERRORS HAVE NOW DECREASED TO N3 WHICH CORRESPONDS
TO THE THIRD TRANSITION IN THE ERROR EQUATION. */
T3=T3;
NCT3=NC;3
STAGE=33;
END3
LASTN=N;
END LOOPS
CALL PRINTGRAPH;
PUT SKIP DATA(T1,T2,T3);
END CASE3;

70




(SIZE):

PRINTGRAPH:PROC

DECLARE I , REDUCTION_FACTOR FLOAT;

DECLARE BIG:

DECLARE PRINTLINE CHAR(80);

DECLARE (FLOOR,SUBSTR) BUILTIN;

/* FIND MAX OF ARRAY NT_TAB */

BI16=0;

DO I=0 TO FLOOR(FIN/CGRAPHT) 3

IF NT_TAB(I1)>BIG THEN BIG=NY_TAB{I):

END;

ON SIZE SYSTEM;

ON SUBSCRIPTRANGE SNAP BEGIN; PUT DATA; STOP; END;

ON STRINGRANGE SNAP BEGIN; PUT DATA; STOP; END;

REDUCTION_FACTOR =50/B16G;

(SIZE): PUT EDIT((I/REDUCTION_FACTOR

DO I= 0 TO 100 BY 10 })(COL(14),F(T,2), 10F(10,2));

PUT EDIT ((6)*~1§*' % ((9)*-*||*|* DO I =1 TO 10))
(COL(14)+A,10A(10));

PRINTLINE=' ¢;

SUBSTR(PRINTLINE,REDUCTION_FACTOR*®*N_TAB(O)#1,1)="N"*; -

SUBSTR(PRINTLINE,REDUCTION_FACTOR®NC_TAB(O)+1,1)=°C*; :

SUBSTR(PRINTLINE yREODUCTION_FACTOR®NT_TAB(O)+1,1)=°T";

PUT SKIP(O) EDIT(PRINTLINE) (COL(20),A);

DO I=1 TO COUNT; _

PRINTLINE=" *; 4

SUBSTR(PRINTLINEgle1)="|";

SUBSTR(PRINTLINE ,REDUCTION_FACTOR*®N_TAB(I)+1,1)="N"'; i

SUBSTR(PRINTLINE,KREDUCTION_FACTOR*NC_TAB(I)+1y1)=°C*;

SUBSTR(PRINTLINE,REDUCTION_FACTORXNT_TAB{I)+1l,1)=*T";

IF MOD(I,10)=0 THEN PUT EDIT(I*DGRAPHT,PRINTLINE)

(COL(9)+F{10,42)9X(1),A);

ELSE i

PUT EDIT(PRINTLINE)(COL(20),A);

END;

PUT PAGE;

PUT EDIT (°N*4*NC*,*NT*)

(COL(10),3A(10))

((N_TAB(KK)yNC_TAB(KK) NT_TAB(KK) DO KK=0 TO COUNT)) :

(COL(8)¢3F(10,2)) H 3

RETURN; :

END PRINTGRAPH;

END MODELS 3

ki

71

s it it s i S e i L ESFER TR




CASE 1

NO = 100 NP = 125 Nl = 25
Al = 04125 AlP = 0,0350 K1 = 10
K1P = 12.5 K2 = 04150 DT = 06100
DGRAPHT = 1 FIN = 50 i
NUMBER OF ERRORS ?
000 45423 90647 135.70 180.94 226417
| C N T
AR - N T
| c - N T
| (o N T
| (o N T
g i C N T
O | c N T
O | ¢ N T
- i CN T
@ 10600 | N T
A | N c T
By | N C T g
®) | N c T
2] | N c T
= | N c T
2 | N c T
o | N c T
> I N e
4 { N ey
g 20,00 | N A
| N c T
I N i ¢
| N : R ¢
| N Fig.A2.11 Computer Printout £y
I N for Case 1 cT
IN ¢'T
IN cT
IN cT
IN cT
30,00 IN cT
In cT
N o §
N cT
72

¥




MAN MONTHS OF DEBUGGING

CASE 2

o

N1 25 Al = 0.0250
K2 0.150 DT = 0.100
OGRAPHT =1

nmxZ
- O
nn
—
woOo
(=]

NUMBER OF ERRORS

0.00 23.99 47,99 71.98 5597 119.97 ]

-n-v-v‘-!-nt-!ﬂ-tw-sﬁ-!-v-l‘ -.-n-vv-n-.--v-u‘ STV Yy '-1--‘!-‘-'--'-' | 3w v -
c N T
c N T

10.00

20,00

4
o
- -

coo
B

IN Fig. A2.12 Computer Printout cT

for Case 2

30.00

zzzzzz2
o -




CASE 3
NO = 100 Nl = 25 N2 = 28
N3 = 15 Al = 0,0250 K1 = 10
K2 = 060050 K3 = 0150 OT = 0,100
FIN = 50 DGRAPHT =1
NUMBER OF ERRORS
0.00 24454 49,08 1362 98,16 122.71
| € N T
| c N T
| C N T
) C N T
O | (o N T
Z, | N C T
O | N c T
@) { N c T
= l N c T
[ 10,00 | N c T
£ | N C T
Iy | N C T
o | N c T
2] i N (o T
& l N c T
Z ! N C T
Q I N c T
= I N g
Z | N C T
S 20,00 | N =y
| N AR ;
I N c 1
N G 4
: N Fig.A2.13 Computer Printout e
for Case 3 c7T
cT

IN
IN
IN cT
IN
In




-

e e
r [ —

(1]

[.2]

[ 3]

[ 4]

[ 5]

[ 6]

[ 7]

[ 8]
[ 9]

[10]

(1]

S e ST T e 3 Ghaue VR B x -y

REFERENCES

Martin L. Shooman, '"Probabilistic Models for Software Reliability
Prediction, Conference on Statistical Methods for the Evaluation of
Computer System Performance, "' Brown University, Nov, 1971,
Frieberger edition, Academic Press, N, Y.C.

Z, Jelinski and P, B, Moranda, ''Software Reliability Research, "
published in Statistical Computer Performance Evaluation, 1972,
Frieberger edition, Academic Press, New York.

Martin L, Shooman, '""Operational Testing and Software Reliability

Estimation During Program Development, "' 1973, IEEE Symposium
on Computer Software Reliability, New York City, April 30-May 2,
1973,

Martin L. Shooman, et al, unpublished memoranda on Error Gene-
ration Models, Bell Laboratories, March 1973,

John D, Musa, "A Theory of Software Reliability and Its Applica-
tions, " IEEE Transactions on Software Engineering, Vol. SE-1,
No. 3, Sept. 1975.

M, L., Shooman and M, I, Bolsky, "Types, Distributions and Test and
Correction Times for Programming Errors, " Proceedings, 1975
International Conference on Reliable Software, Los Angeles, April
21+23, 1975.

J. Dickson, J, Hesse, A. Kientz, and M, Shooman, "Quantitative
Analysis of Software Reliability, "' 1972 Annual Reliability Symposium
Proceedings, IEEE, January {972,

F, Akiyama, ""An Example of Software System Debugging, '' IFIP
Congress 1971, Ljubljana, Yugoslavia, August 1971,

Frederick P, Brooks, Jr., "How does the project get to be a year
late? -- One day at a time, ' Datamation, December 1974,

Daniel Allen Rankin, '"A Model of the Cost of Software Development for
the Apollo Spacecraft Computer, '' Submitted in partial fulfillment of
the requirements for the degree of Master of Science at the "Massach-
usetts Institute of Technology, ' June 1972,

Martin L, Shooman, '"Probabilistic Reliability: An Engineering Ap-
proach, " McGraw-Hill, 1968,

75




METRIC SYSTEM

BASE UNITS:
_Quantity _ Unit 51 Symbol _ Formula _
length metre m |
mass kilogram kg
time second s ]
electric current ampere A |
thermodynamic temperature kelvin K |
amount of substance mole mol |
luminous intensity candela cd
SUPPLEMENTARY UNITS:
plane angle radian rad
solid angle steradian st f
DERIVED UNITS:
Acceleration metre per second squared m/s |
activity (of a radioactive source) disintegration per second (disintegration)/s ’.
angular acceleration radian per second squared rad/s §
angular velocity radian per second rad/s |
area square metre m
density kilogram per cubic metre kg/m
electric capacitance farad F AslV ;
electrical conductance siemens S ANV ;
electric field strength volt per metre Vim E
electric inductance henry H V-s/A
electric potential difference volt v WA
electric resistance ohm VIA
electromotive force volt \' WIA :
energy joule ) N'm
entropy joule per kelvin JK
force newton N kg:m/s 4
frequency hertz Hz (cycleys <
illuminance lux Ix Im/m :
luminance candela per square metre cd/m 4
luminous flux lumen Im cd-sr
magnetic field strength ampere per metre A/m E
magnetic flux weber Wb Vs 3
magnetic flux density tesla T Wb/m
magnetomotive force ampere A
power watt w Vs
pressure pascal Pa N/m
quantity of electricity coulomb C As
quantity of heat joule ] N-m
radiant intensity watt per steradian Wisr
specific heat joule per kilogram-kelvin Jkg-K
stress pascal Pa N/m
thermal conductivity watt per metre-kelvin Wim-K
velocity metre per second m/s
viscosity, dynamic pascal-second Pes
viscosity, kinematic square metre per second m/s 4
voltage volt v WIA
volume cubic metre m
wavenumber reciprocal metre (wave)m
work joule ) Nm
SI PREFIXES:
__Multiplication Factors Prefix $1 Symbol
1 000 000 000 000 = 10'?2 tora T
1 000 000 000 = 10° gige G A
1 000 000 = 10* mega M E
1000 = 10" kilo k 4
100 = 10? hecto* h %
10 = 10 deka* da :
0.1 =10"" deci* d
0.01 = 10~? centl® «
0.001 = 10~} milli m
0.000 001 = 10~* micro m
0.000 000 001 = 10~* nano n
0.000 000 000 001 = 10~12 ico r
0.000 000 000 000 001 = 10~ omto ]
0.000 000 000 000 N00 001 = 10~1* atto L] !
* To be avoided where possible.
4U.5. GOVERNMENT PRINTING OFFICE: 1977-714-025/100 | 3




